A multiplicity result for a class of superquadratic Hamiltonian systems
نویسنده
چکیده
We establish the existence of two nontrivial solutions to semilinear elliptic systems with superquadratic and subcritical growth rates. For a small positive parameter λ, we consider the system −∆v = λf(u) in Ω, −∆u = g(v) in Ω, u = v = 0 on ∂Ω, where Ω is a smooth bounded domain in R with N ≥ 1. One solution is obtained applying Ambrosetti and Rabinowitz’s classical Mountain Pass Theorem, and the other solution by a local minimization.
منابع مشابه
Multiplicity for Symmetric Indefinite Functionals: Application to Hamiltonian and Elliptic Systems
In this article we study the existence of critical points for certain superquadratic strongly indefinite even functionals appearing in the study of periodic solutions of Hamiltonian systems and solutions of certain class of Elliptic Systems. We first present two abstract critical point theorems for even functionals. These results are well suited for our applications, but they are interesting by...
متن کاملMultiple periodic solutions for superquadratic second-order discrete Hamiltonian systems
Some multiplicity results are obtained for periodic solutions of the nonautonomous superquadratic second-order discrete Hamiltonian systems Duðt 1Þ þ rF ðt; uðtÞÞ 1⁄4 0 8t 2 Z 0096-3 doi:10. q Sup Outsta * Co E-m Plea Com by using critical point theory, especially, a three critical points theorem proposed by Brezis and Nirenberg. 2007 Elsevier Inc. All rights reserved.
متن کاملMULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS
In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.
متن کاملMultiplicity of Solutions for Nonperiodic Perturbed Fractional Hamiltonian Systems
In this article, we prove the existence and multiplicity of nontrivial solutions for the nonperiodic perturbed fractional Hamiltonian systems −tD ∞(−∞D t x(t))− λL(t) · x(t) +∇W (t, x(t)) = f(t), x ∈ H(R,R ), where α ∈ (1/2, 1], λ > 0 is a parameter, t ∈ R, x ∈ RN , −∞D t and tD ∞ are left and right Liouville-Weyl fractional derivatives of order α on the whole axis R respectively, the matrix L(...
متن کاملExistence and Multiplicity of Homoclinic Orbits for Second-Order Hamiltonian Systems with Superquadratic Potential
and Applied Analysis 3 Theorem 3. Assume that L satisfies (L) and (L) and W satisfies (W1), (W4), (W8) and (W9). Then problem (1) possesses a nontrivial homoclinic orbit. Remark 4. In Theorem 3, we consider the existence of homoclinic orbits for problem (1) under a class of local superquadratic conditions without the (AR) condition and any periodicity assumptions on both L and W. There are func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003